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Abstract. We numerically study the spatial diffusion of an atomic cloud experiencing Sisyphus cooling
in a three-dimensional lin⊥lin optical lattice in a broad range of lattice parameters. In particular, we
investigate the dependence on the size of the lattice sites which changes with the angle between the laser
beams. We show that the steady-state temperature is largely independent of the lattice angle, but that the
spatial diffusion changes significantly. It is shown that the numerical results fulfill the Einstein relations of
Brownian motion in the jumping regime as well as in the oscillating regime. We finally derive an effective
Brownian motion model from first principles which gives good agreement with the simulations.

PACS. 32.80.Pj Optical cooling of atoms, trapping – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions

1 Introduction

Laser cooling and trapping was one of the major ad-
vances of the last part of the 20th century. In 1997, the
Nobel prize in physics was awarded to Steven Chu, Claude
Cohen-Tannoudji and William D. Phillips for their works
in this domain [1], in particular, for their discovery of the
Sisyphus cooling effect [2] which permits to achieve sub-
Doppler temperatures and is widely used in various dif-
ferent laser cooling schemes [3]. The Sisyphus effect in
optical lattices [4] was studied in a large variety of sys-
tems and of field configurations. A large number of results
were obtained on temperature, localization and spatial or-
der [5] and an excellent agreement between the experimen-
tal observations and the theoretical predictions was found.
Much less work has been done to study the spatial diffu-
sion in optical lattices, but also for this problem a rea-
sonable agreement was found between the models [6–8]
and the experiments [6,9–11]. However, no detailed study
of the dependence of spatial diffusion on, for example,
the different directions of an anisotropic lattice or on the
size and shape of lattice sites has been performed so far.
Very recently, optical lattices and atomic transport therein
has attracted new attention with the study of quantum
chaos [12] and the achievement of Bose-Einstein conden-
sation by purely optical means [13].
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Spatial diffusion in one-dimensional (1D) Sisyphus
cooling schemes is fairly well understood. In the so-called
jumping regime, where an atom undergoes several opti-
cal pumping cycles while moving over one optical wave-
length, the atomic motion can be understood by a simple
model of Brownian motion [2,14]. In this regime, spatially
averaged friction coefficients α0 and momentum diffusion
coefficients Dp have been derived and the validity of the
Einstein relations

kBT =
Dp

α0
(1)

and

Ds =
kBT

α0
, (2)

where T is the steady-state temperature, kB the
Boltzmann constant, and Ds the spatial diffusion coef-
ficient, has been shown. On the contrary, in the so-called
oscillating regime, where an atom travels over several op-
tical wavelengths before being optically pumped into an-
other internal state, the friction force has been shown to
be velocity-dependent [2,14],

F (v) =
−α0v

1 + (v/vc)2
(3)

where vc denotes the capture velocity of Sisyphus cooling.
In this situation, an analytical derivation of the spatial
diffusion coefficient has still be found [6], but an interpre-
tation in terms of a simple Brownian motion no longer
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works. In particular, it is found in reference [6] that the
behavior of the spatial diffusion coefficient as a function of
the atom-light interaction parameters (laser light intensity
and detuning) is dramatically different in the oscillating
regime compared to the jumping regime.

In higher dimensional setups, such a difference of the
spatial diffusion behaviors in the jumping and the oscil-
lating regimes is expected, too. Moreover, the important
difference of the mean free path of a diffusing atom in these
regimes may induce different behaviors of the spatial diffu-
sion coefficients as a function of the lattice periods. These
are the main issues considered in the present paper.

In this work we perform a detailed study of spatial dif-
fusion in the so-called 3D-lin⊥lin lattice [15]. Using semi-
classical Monte-Carlo simulations we find that equalities
of the form of equations (1, 2) still hold in the oscillating
regime. This suggests that an interpretation by a Brown-
ian motion should still be possible. We derive such a model
from basic principles assuming a thermal spatial distribu-
tion and taking into account some specific properties of
our optical lattice and find a good quantitative agreement
with the numerical results. In particular, we calculate an
effective friction coefficient α in a range of parameters con-
taining both the jumping and the oscillating regimes. We
find that in the oscillating regime, α increases with the lat-
tice beam intensity and decreases when |∆| increases, in
strong opposition to the friction coefficient α0 calculated
in the jumping regime.

Our work is organized as follows. In Section 2 we de-
scribe the specific laser and atom configuration for the 3D
optical lattice that we consider here and discuss several
important features of the optical potential surfaces. In Sec-
tion 3, we present a physical picture of spatial diffusion in
periodic optical lattices and we particularly forecast a dra-
matic change of the behavior of the spatial diffusion coef-
ficients not only versus the atom-light interaction param-
eters but also versus the geometrical parameters (spatial
lattice periods) when going from the jumping to the oscil-
lating regime. In Section 4 we derive an effective Brownian
motion model which we compare in the following sections
with the numerical results on the steady-state tempera-
ture (Sect. 5) and on the spatial diffusion (Sect. 6). Nu-
merical results on the friction coefficient are then discussed
in Section 7 and the validity of the Einstein relations is
shown. Finally, we summarize our results in Section 8.

2 Sisyphus cooling in the 3D-lin⊥lin
configuration

The Sisyphus effect cools a cloud of multi-level atoms
when a laser field induces spatially modulated optical po-
tentials and pumping rates in such a way that a moving
atom on average climbs up potential hills before it is op-
tically pumped into a lower lying potential surface [2]. In
this case kinetic energy is converted into potential energy
which is subsequently carried away by a spontaneously
emitted photon, thereby reducing the total atomic energy.

In this paper we study the so-called 3D-lin⊥lin config-
uration [15]. It is obtained from the standard 1D-lin⊥lin

Fig. 1. Laser beam configuration for the three-dimensional
lin⊥lin Sisyphus cooling. Two pairs of laser beams with crossed
linear polarizations induce polarization and light shift gradi-
ents in the three directions of space.

configuration [2] by symmetrically splitting each of the
two laser beams into two parts at an angle θx and θy,
respectively, with the (Oz) axis in the (Oxz) and (Oyz)
planes respectively. The resulting configuration consists
of two pairs of laser beams in the (Oxz) plane and in the
(Oyz) plane, respectively, as depicted in Figure 1, with
orthogonal linear polarizations. An important property of
this configuration in contrast to 3D setups built of more
than four laser beams is that the interference pattern and
thus the topography of the lattice does not change because
of fluctuations of the relative phase between the various
laser beams. Instead, such fluctuations only induce dis-
placements of the lattice.

As in most theoretical work, we will consider atoms
with a ground state of angular momentum 1/2 and an ex-
cited state of angular momentum 3/2. Experiments usu-
ally fall into the low saturation regime defined by

s0 =
Ω2

0/2
∆2 + Γ 2/4

� 1, (4)

where s0 is the saturation parameter for an atomic tran-
sition with a Clebsch-Gordan coefficient of one, Ω0 is the
Rabi frequency for one laser beam, ∆ the detuning of the
laser beams from the atomic resonance frequency, and Γ
the natural width of the atomic excited state. This do-
main is known to lead to the lowest temperatures. In this
situation we may adiabatically eliminate the Zeeman sub-
levels of the excited state, leading to a theory which only
involves the ground state sublevels |±〉 of angular momen-
tum ±1/2 [14].

An atom in state |±〉 then experiences an optical po-
tential U± given by

U±(x, y, z) =
8~∆′0

3

[
cos(kxx)2 + cos(kyy)2

∓ cos(kxx) cos(kyy) cos(kzz)
]

(5)
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Fig. 2. Section at y = 0 of the optical potential associated
with the Zeeman sublevel |−〉 of the atomic internal ground
state in the case of a negative detuning (∆ < 0). U+ can be
obtained from U− by a translation of half a spatial period along
one of the axes (Ox) and (Oz).

where

∆′0 = ∆
s0

2
(6)

is the light shift per beam and

kx = k sin(θx), (7)
ky = k sin(θy), (8)
kz = k[cos (θx) + cos(θy)], (9)

with k the laser wavenumber. The optical potentials are
then periodic in the three directions of space with peri-
ods λi = 2π/ki. Equation (5) shows that U±(x, y, z) has
the same functional dependence on kxx and on kyy but a
different one on kzz. We will therefore in the remainder
of the paper concentrate on a two-dimensional subsystem
only depending on x and z while fixing y = 0. Previous
comparisons between 1D and 2D models have shown that
the general behavior of the dynamic variables is the same
in different dimensions but that scaling factors appear [6].
We thus expect that the results of our work give physical
interpretations to full 3D laser cooling schemes but exact
numerical values will be changed. Moreover, we will as-
sume a single lattice angle θ = θx = θy since this gives
rise to a vanishing mean radiation pressure force in all
directions. The general shape of the optical potential is
plotted in Figure 2.

In the 3D-lin⊥lin configuration, the bottom of each po-
tential well is harmonic in first approximation with main
axis x, y and z and with the following frequencies:

Ωx,y = 4
√
|∆′0|ωr

kx,y
k
, (10)

Ωz =
4√
3

√
|∆′0|ωr

kz
k
, (11)

Fig. 3. Sections at (a) y = z = 0, (b) x = y = 0 of the optical
potential surfaces U+ (solid curve) and U− (dashed curve).

where ωr = ~k2/(2M) denotes the recoil frequency. The
optical pumping time is

τp =
9

8Γ ′0
, (12)

where Γ ′0 = Γs0/2 is the optical pumping rate. The jump-
ing regime corresponds to a domain where Ωi�1/τp, that
is, when an atom undergoes many optical pumping cycles
during a single oscillation or during a flight over a sin-
gle potential well. On the contrary, the oscillating regime
corresponds to Ωi�1/τp. In this case, an atom can os-
cillate or travel over many wells without undergoing any
pumping cycle. Note that in a 3D-lin⊥lin optical lattice,
the regimes can be different in different directions because
of the geometrical dependence of the border between the
jumping and the oscillating regimes,√

ωr

|∆′0|
|∆|
Γ
∼ λi

λ
· (13)

The asymmetry between the x- and z-directions can be
seen most easily in a plot of the optical potentials along
the x- and z-axis, respectively, as shown in Figure 3. These
have different shapes and particularly the crossing be-
tween both potential curves is higher in the transverse
direction (x) than it is in the longitudinal one (z). As
we will see later, this induces significant differences in the
cooling and diffusion properties.

As the starting point for the theory presented here we
use the standard Fokker-Planck equation (FPE) of the
semiclassical laser cooling theory [8,17,18] where the ex-
ternal degrees of freedom of the atoms are treated as classi-
cal variables. This is obtained from the Wigner transform
[19] of the full quantum master equation for external as
well as internal degrees of freedom under the assumption
of a momentum distribution which is much broader than
a single photon momentum, ∆P � ~k. The FPE for the
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populations Π±(r,p) of |±〉 reads[
∂t +

pi
M
∂i − (∂iU±)∂pi

]
Π± = γ∓Π∓ − γ±Π±

− F i±±∂piΠ± − F i∓±∂piΠ∓
+Dij

±±∂pi∂pjΠ± +Dij
∓±∂pi∂pjΠ∓. (14)

Here i, j = x, z and summation over i and j is as-
sumed. In this equation, γ± is the jumping rate from the
Zeeman sublevel |±〉 to the sublevel |∓〉, F i±± represents
the radiation pressure force and Dij

±± the momentum dif-
fusion matrix for atoms in the internal state |±〉. F i±∓
and Dij

±∓ are the corresponding quantities associated with
jumps between different internal states [16]. Note that all
these coefficients only depend on the atomic spatial posi-
tion [17,18].

A numerical solution of the FPE can be obtained
by averaging over many realizations of the correspond-
ing Langevin equations [20]. Such a realization consists in
following the trajectory of a single atom which jumps be-
tween the two optical potential surfaces corresponding to
the two internal states with the appropriate probabilities.
Between subsequent jumps the atom experiences potential
and radiation pressure forces as well as random momen-
tum kicks which mimic the momentum diffusion according
to the coefficients of the FPE. We have performed a large
number of such semiclassical Monte-Carlo simulations in
order to investigate the dependence of the steady-state
temperature, the friction coefficient, and in particular the
spatial diffusion coefficient on the various lattice parame-
ters such as detuning ∆, light shift ∆′0, and lattice angle θ.
We will discuss these numerical results later in Sections 5,
6, and 7.

3 Physical picture of spatial diffusion

As a result of the Sisyphus effect, the atoms are cooled and
trapped in the potential wells and optical lattices are usu-
ally described as atoms well confined in regularly arranged
sites (note that in the lin⊥lin lattice, the spatial periods
of these sites are λi/2, the trapping sites corresponding
alternatively to U+ and U− potential wells). However, in
bright optical lattices the atom confinement is not perfect
because of the strong interaction with the laser light. Two
different processes then produce atomic displacements be-
tween different trapping sites, inducing spatial diffusion
(see Fig. 4). For the sake of simplicity, we describe these
processes in one dimension but they occur analogously in
higher dimensional setups.

On the one hand (see Fig. 4 left), a trapped atom still
undergoes fluorescence cycles and thus takes random re-
coils due to photon absorption and re-emission. Hence,
the oscillating motion of the atom gets perturbed. Partic-
ularly, the atom can explore regions where its potential
energy (U± if the atomic internal state is |±〉) is not mini-
mum (U± > U∓). In such regions, optical pumping cycles
preferentially transfer the atom into the lower potential

Fig. 4. Processes of spatial diffusion in an optical lattice.
Left: process due to the heating. Right: process due to opti-
cal pumping.

curve and the atom is cooled and trapped in the neigh-
boring potential well (elementary Sisyphus cooling pro-
cess). This process induces atomic transfers from a site to
a neighboring one in another potential curve.

On the other hand (see Fig 4 right), when a trapped
atom oscillates in a potential well, it has a small but non
zero probability of being optically pumped into the upper
potential curve. In the jumping regime the atom is im-
mediately pumped back into its initial trapping potential
well. This effect thus induces heating and noisy oscillating
trajectory of the atom leading indirectly to spatial diffu-
sion via transfers between neighbouring potential wells.
On the contrary, in the oscillating regime the atom is not
immediately re-pumped and travels over several potential
wells before undergoing an elementary Sisyphus cooling
process again which traps it into another potential well.

The diffusion process linked to optical pumping is
much more efficient than the one due to recoils except
for very small laser detunings [14]. We will thus focus on
the second process to describe spatial diffusion in periodic
multi-dimensional optical lattices. We will see that the dif-
ferences of this process in the jumping and the oscillating
regimes induce a dramatic difference in the behavior of
the spatial diffusion coefficients.

In a simple model, we can describe the diffusive behav-
ior of the atomic cloud as random walks of atoms between
periodic trapping sites [21]. Let us assume that an atom
is trapped in one specific potential well and jumps after a
time τ to another well. The spatial diffusion coefficient in
the direction i ∈ {x, y, z} is

Dsi =
d2
i

2τ
(15)

where di is the mean free path in direction i.
In the jumping regime, as discussed above, an atom

essentially transfers from a trapping site to a neighbor-
ing one and thus di ∼ λi. The life time of an oscillatory
external state is on average of the order of 1/Γ ′0 [22], in-
dependently of λi. Hence, τ ∼ 1/Γ ′0 and

Dsi ∼ λ2
iΓ
′
0. (16)

In the oscillating regime, an atom travels over several lat-
tice sites before it is trapped again. Here d ∼ vτ where
v '

√
kBT/M is the average velocity with M the atomic

mass and τ the time of one flight. As it will be justified in
Sections 4 and 5, kBT is proportional to ~|∆′0| indepen-
dently of ∆ and θ. τ is of the order of 1/Γ ′0 again [22].
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Hence,

Ds ∼
~
M

|∆|
Γ
· (17)

Note that we implicitly assume straight line flights and
we do not consider anisotropic effects. Obviously, because
of the potential shape and anisotropy, a dependence of
Dsi on λx, λy and λz should be added in equation (17)
but our simple model does not provide its determination.
Nevertheless, in the case of a strong anisotropy (λi � λj),
the setup is almost one-dimensional in the i-direction so
it is expected that Dsi does not depend on λi. Indeed,
at large space scale, the length of one flight of a particle
moving on a 1D-periodic potential is independent of the
periodicity.

We want to emphasize that these discussions are only
valid for lattice parameters far away from the domain
of décrochage for spatial diffusion. For small potential
depths, rare long flights dominate the diffusion which
therefore becomes anomalous [7].

4 Brownian motion model

Before turning to a detailed discussion of the numerical
results, we will now derive a simple analytical model which
will help to understand the main features of the cooling
scheme.

The basic idea of this model is to consider the atomic
dynamics as a Brownian motion, as it has been success-
fully applied to Doppler cooling [14] and 1D Sisyphus cool-
ing in the jumping regime [2,14], but taking some proper-
ties of localization into account [23,24]. The fundamental
ingredients are therefore the derivation of an average fric-
tion force and an average momentum diffusion coefficient.

Let us consider an atom at position r = xex + zez
moving with a constant velocity v = vxex + vzez. In this
case the FPE (14) reduces to

(∂t + v∇)Π± = −γ±Π± + γ∓Π∓

= −(γ− + γ+)Π± + γ∓ (18)

where we used Π+ +Π− = 1. The jump rates are

γ± =
4
9
Γ ′0(1 + cos2 kxx± 2 cos kxx cos kzz). (19)

Expanding the populations in powers of the velocity in
the form Π± =

∑
nΠ

(n)
± and inserting into equation (18),

yields the stationary solutions

Π
(0)
± =

γ∓
γ− + γ+

(20)

Π
(n)
± = QnΠ

(0)
± (21)

with the operator

Q = − 1
γ− + γ+

v∇. (22)

Formally, the velocity and position dependent level popu-
lations can thus be written as

Π± =
1

1−QΠ
(0)
± . (23)

The total force averaged over the internal atomic states is
then given by

F(r,v) = −(Π+∇U+ +Π−∇U−). (24)

In order to derive a space and velocity averaged friction
force in the form F = − (vxαxex + vzαzez) we now have
to make certain assumptions on the stationary atomic
distribution.

In 1D laser cooling one usually assumes a flat spatial
distribution of the atoms in the lattice. However, as we
have seen in Section 2, the shape of the 3D optical po-
tential differs significantly in the different directions. In
particular the potential barrier between neighboring po-
tential wells is much higher in the transverse than in the
longitudinal direction. From equation (5) and Figure 3
we see that in the x direction the potential depth is of
the order of 16~|∆′0|/3 whereas we will see later that the
steady-state temperature is of the order of 2~|∆′0|. There-
fore we expect strong localization in that direction. On
the contrary, in the z-direction the potential depth is of
the order of 8~|∆′0|/3 and the atoms will be less localized.
Instead of a flat spatial distribution of the atoms we will
thus assume a thermal distribution

P (r) ∝ exp
{
−γ−U+ + γ+U−
kBT (γ+ + γ−)

}
(25)

corresponding to the optical potential averaged over the
internal atomic state and for a given, yet unknown, tem-
perature T . Let us emphasize that assuming a thermal dis-
tribution is not a priori justified for laser cooled samples
but show significant quantitative deviations from such a
simple behavior [25,26]. In fact, our numerical simulations
give actual spatial distributions in qualitative agreement
with equation (25) but show significant quantitative de-
viations from such a simple behavior. However, we only
use this approximation here to obtain a qualitative un-
derstanding of the exact results obtained numerically and
we will see later that our results derived here are in good
quantitative agreement with the simulations.

Because of the symmetry of P (r), only terms contain-
ing odd powers of the velocity in Π± contribute to the
averaged force. We may thus restrict ourselves to

Πodd
± =

∑
n

Π
(2n+1)
± =

1
1−Q2

Π
(1)
± . (26)

As a further simplification we will now also average over
velocity and therefore replace Q2 by

〈Q2〉 = − 2ωrkBT/~
〈(γ− + γ+)2〉

[
(kx/k)2 + (kz/k)2

]
(27)

where 〈...〉 is the spatial average with respect to P (r).
Equation (27) is obtained by substituting vi → 0,
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v2
i → kBT/M , ∂2

i → −k2
i (i = x, z) in equation (22). From

this we finally get the friction coefficients

αi = −
6∆Γ ~k

2
iCi

1− 〈Q2〉 (28)

with

Cx =
〈

sin4(kxx) cos2(kzz)
[1 + cos2(kxx)]3

〉
, (29)

Cz =
〈

cos2(kxx) sin2(kzz)
[1 + cos2(kxx)]2

〉
· (30)

Along the lines of [27] and using the same approximations
as for the friction, we derive averaged momentum diffusion
coefficients

Dpi =
8∆Γ ∆

′
0~2k2

iC
′
i

1− 〈Q2〉 (31)

with

C′x =
〈

4Π(0)
+ Π

(0)
−

sin2(kxx) cos2(kzz)
1 + cos2(kxx)

〉
, (32)

C′z =
〈

4Π(0)
+ Π

(0)
−

cos2(kxx) sin2(kzz)
1 + cos2(kxx)

〉
· (33)

For simplicity we have not written a term of the momen-
tum diffusion which arises from the random recoil of ab-
sorbed and spontaneously emitted photons. This varies as
Γ ′0 and thus can be neglected for large detuning (|∆| > Γ ).

In a model of Brownian motion, the steady-state tem-
perature then fulfills

kBT =
1
2

(
Dpx

αx
+
Dpz

αz

)
, (34)

that is, averaging equation (1) over the x- and z-directions.
The right hand side is obtained from equations (28, 31)
which themselves depend on the temperature via equa-
tion (25). Thus, equation (34) yields an implicit equation
for kBT/~|∆′0| which can be solved numerically, e.g., by
iteration of equations (25–34) recursively. Note that no
lattice parameter, such as the lattice angle or the laser
detuning, appears in this equation. T is thus strictly pro-
portional to ~|∆′0| and independent of θ and ∆. We find

kBT = 1.545 ~|∆′0|. (35)

This temperature can then be used to determine the fol-
lowing numerical values:

Cx = 0.0356, Cz = 0.0747,
C′x = 0.0409, C′z = 0.0874, (36)

and

〈(γ− + γ+)2〉 = 2.55Γ ′20 . (37)

Finally, we want to derive an approximate expression for
the spatial diffusion coefficients. To this end, we must

again take the atomic localization into account. While
equation (1) for the relation between temperature, mo-
mentum diffusion coefficient and friction coefficient ap-
proximately holds for trapped and untrapped atoms, the
corresponding equation (2) for the spatial diffusion only
holds for free atoms. Indeed a cloud of completely trapped
atoms achieves a stationary spatial distribution and hence
shows no spatial diffusion. Using equation (35) and the
assumption of a thermal momentum and spatial distribu-
tion, we calculate numerically that a fraction of 55.6% of
all atoms have a total energy above the potential depth
along z, and a fraction of 15.3% above the potential depth
along x as discussed before. Taking only these free atoms
into account, we finally obtain effective spatial diffusion
coefficients, which correspond to those observed in the nu-
merical simulations or in actual experiments, in the form

Dsx = 0.554
~
M

(
k

kx

)2

×
{
|∆′0|
ωr

Γ

|∆| + 1.21
|∆|
Γ

[
(kx/k)2 + (kz/k)2

]}
,

Dsz = 0.956
~
M

(
k

kz

)2

×
{
|∆′0|
ωr

Γ

|∆| + 1.21
|∆|
Γ

[
(kz/k)2 + (kx/k)2

]}
·(38)

This expression is in good qualitative agreement with our
physical discussion (see Sect. 3) in both the jumping and
the oscillating regime. We will further discuss this point
in Section 6.

5 Steady-state kinetic temperature

We performed a systematic study of the temperature and
the spatial diffusion as a function of the lattice parameters,
exploring a large domain containing both the jumping and
the oscillating regime. More precisely, we performed nu-
merical semi-classical Monte-Carlo simulations with the
following parameters:

θ = 15◦, 30◦, 45◦, 60◦, 75◦,
∆/Γ = −2, −3, −5, −10, −15, −20, −25, −30,

∆′0/ωr = −150, −300, −450, −600, −750.

In this and the following sections we present the results
of the simulations and compare them with the analytical
model discussed above. All of our discussions and conclu-
sions rely on the complete set of data, even if the figures
only contain a few sample curves for the sake of clarity.

We first study the atomic cloud steady-state tempera-
ture resulting from the competition between slowing and
heating processes. We calculate the average square ve-
locity over the whole atomic cloud at each time step of
the simulations. The temperature in direction i is then
given by

kBTi = M〈v2
i 〉 · (39)
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Fig. 5. Transverse (a) and longitudinal (b) steady-state tem-
peratures versus the laser detuning ∆ for a fixed lattice angle
θ = 45◦ and for various light shifts (the values of |∆′0|/ωr are
quoted to the right of the corresponding curves).

A second method to obtain the temperature numerically
is to fit a Gaussian to the simulated momentum distri-
bution. We have checked that the widths of these Gaus-
sians indeed give the same temperatures as those obtained
from equation (39). For a broad initial velocity distribu-
tion, the temperature first decreases in time (thermaliza-
tion phase), but finally reaches a steady state.

The thermalization time lies between 50/Γ ′0 and
100/Γ ′0 for large enough lattice angles (θ ≥ 30◦ in the
simulations), but for θ = 15◦ it is approximately 400/Γ ′0
in the transverse direction. In this case, the spatial period
is large and an atom needs to fly a long time to undergo
efficient Sisyphus cooling. Such an increase of the cooling
time is also observed in the longitudinal direction for large
angles but is less important because λz does not reach very
large values.

Both the transverse and the longitudinal temperatures
are shown in Figure 5 versus the laser detuning for a fixed
lattice angle and for several light shifts per beam. This
exhibits two domains where the temperature behaves dif-
ferently. For small detunings (|∆| < 10Γ ) we find a rapid
decrease of the temperature with increasing |∆|, whereas
for large detunings the temperature is independent of ∆
but increases approximately linearly with ∆′0. This agrees
well with the general form

kBTi
~|∆′0|

=

[
Ai +Bi

(
λi
λ

)2
](

Γ

|∆|

)2

+ Ci, (40)

where Ai, Bi and Ci (i = x, z) are numerical factors, as,
for example, has been found in reference [18]. The first
term of equation (40) has not been found in Section 4
because in the momentum diffusion, equation (31), we

Fig. 6. Transverse (a) and longitudinal (b) temperatures ver-
sus the corresponding lattice period for various laser detunings
(triangles: ∆ = −10Γ , squares: ∆ = −20Γ , circles: ∆ = −30Γ )
and light shifts (the values of |∆′0|/ωr are quoted to the right
of the corresponding curves).

neglected the term due to absorption and spontaneous
emission.

Let us first concentrate on the oscillating regime,
|∆| � Γ . In Figure 6 we plot the temperature versus
the lattice spatial period for various laser detunings and
light shifts in this domain. We find that the temperature
is nearly independent of the lattice angle, i.e., of the spa-
tial periods. The temperature is thus strictly linear in the
potential depth and independent of any other lattice pa-
rameter as predicted by equation (35). Such a property
has been observed experimentally [28] but we emphasize
that our result here holds for a broader range of param-
eters in the oscillating regime as well as in the jumping
regime. A linear fit to the numerical results gives

kBTx ' 2~|∆′0|+ 123.3~ωr, (41)
kBTz ' 1.43~|∆′0|+ 62.6~ωr. (42)

In the range of parameters investigated here, these val-
ues of the temperatures agree with equation (35) with an
accuracy of about 10%.

Equations (5) show that the temperature is
anisotropic, Tx > Tz, which is in good agreement
with experimental observations by Kastberg et al. [29].
This is a consequence of the asymmetry between the
transverse and longitudinal directions for the optical
potential in the lin⊥lin lattice. In the physical picture
of Sisyphus cooling [2,14], cooling ends once an atom
is trapped in a single potential well and hence the
steady-state temperature is proportional to the potential
depth. As already discussed in Section 4 this is about
twice as large in the transverse direction as in the
longitudinal. Hence, the transverse temperature would be
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Fig. 7. Variation of the (a) transverse and (b) longitudinal
temperatures as a function of the lattice spatial periods for
small detunings. T 0

i denotes the temperature in the domain
of large ∆, ∆/Γ = −2 (triangles), ∆/Γ = −3 (squares), and
|∆′0|/ωr = 300, 600. The lines are linear fits of the form of
equation (40).

expected to be about twice as large as the longitudinal.
However, correlations between these two directions tend
to equilibrate the temperatures and in the simulations
we therefore find Tx to be only about 1.4 times larger
than Tz.

We now turn to the jumping regime, |∆| < 10Γ . We
find a completely different behavior of the temperature.
This is a consequence of the increasing contribution of
absorption and spontaneous emission to the force fluctu-
ations [28]. Physically, an atom experiences many photon
recoils during one elementary cooling process and is thus
more likely to escape from the trapping potential. Hence,
the atom can reach a steady state temperature larger than
the potential well depth.

In Figure 7 we plot the increase of the temperature
compared to the oscillating regime as a function of the lat-
tice periods λi. In excellent agreement with equation (40)
we find that Ti is proportional to ∆′0 and to λ2

i .

6 Spatial diffusion of the atomic cloud

We now turn to the study of the spatial diffusion of the
atomic cloud. In the simulations we calculate the average
square position 〈r2

i (t)〉 in each direction over the whole
cloud.

In the thermalization phase the hot atoms follow al-
most ballistic trajectories and the cloud expands rapidly.
For longer times the expansion reaches a normal diffusion
regime where

〈r2
i (t)〉 = 2Dsit+∆r2

i,0 (43)

Fig. 8. Transverse (a) and longitudinal (b) spatial diffusion
coefficients as a function of ∆ for various ∆′0 (the values of
|∆′0|/ωr are plotted in the graphs) and for θ = 45◦. The line cor-
responds to the analytical fit, equation (44), for ∆′0 = −450ωr.

and ∆r2
i,0 is a constant depending on the initial space and

velocity distribution. Note that Dsi does not depend on
this initial distribution as we verified in the simulations.

In Figure 8 we plot the transverse and longitudinal
spatial diffusion coefficients versus the lattice detuning for
various light shifts and for a given lattice angle. Figure 8
clearly shows two domains where the spatial diffusion co-
efficient behaves differently. For small detunings, Dsi de-
creases rapidly with |∆| and increases with |∆′0|, whereas
for large detunings, Dsi increases with |∆| and does not
depend on ∆′0 except for ∆′0 = −150ωr. The latter corre-
sponds to a relatively shallow potential and the system is
close to the transition to anomalous diffusion [6,7,28].

Fitting the numerical results with an expression of the
form of equation (38), we find:

Dsx = 0.50
~
M

(
k

kx

)2

×
{
|∆′0|
ωr

Γ

|∆| + 1.73
|∆|
Γ

[
1.16(kx/k)2 + 0.83(kz/k)2

]}
,

Dsz = 1.30
~
M

(
k

kz

)2

×
{
|∆′0|
ωr

Γ

|∆| + 1.00
|∆|
Γ

[
0.83(kz/k)2 + 1.16(kx/k)2

]}
·

(44)

The coefficients of this fit are in good quantitative agree-
ment with the analytical result (38). The main difference
is the factor of 1.39 which amounts to the difference be-
tween the longitudinal and the transverse temperatures
as found in Section 5. Figure 8 shows that equation (44)
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Fig. 9. Transverse (x) and longitudinal (z) spatial diffusion
coefficients divided by the corresponding square spatial period
λ2
i as a function of θ for ∆′0 = −750ωr and ∆ = −3Γ (jumping

regime).

yields an excellent fit to the numerical data. From equa-
tions (13, 38, 44) we observe that the two domains where
Ds behaves differently correspond to the jumping and the
oscillating regimes.

In the jumping regime we find:

Dsx = 0.025λ2
xΓ
′
0, (45)

Dsz = 0.066λ2
zΓ
′
0, (46)

in good qualitative agreement with our physical discus-
sion in Section 3, see equation (16). In particular, Dsi is
proportional to λ2

i as shown in Figure 9 and proportional
to the optical pumping rate Γ ′0. The different values of
the numerical coefficients indicate that the trapping is
stronger in the transverse direction than in the longitu-
dinal, in agreement with our discussion in Section 4.

On the contrary, in the oscillating regime we find:

Dsx =
~
M

[
1 + 0.72

(
λx
λz

)2
]
|∆|
Γ

(47)

Dsz = 1.08
~
M

[
1 + 1.39

(
λz
λx

)2
]
|∆|
Γ
· (48)

In this regime, Ds is proportional to ∆ as expected from
equation (17) and the angular dependence is qualitatively
given by equation (38). In Figure 10 we show this angular
dependence in the oscillating regime. Here, the transverse
and longitudinal directions are not independent because
the potential wells significantly deflect the trajectories of
atoms travelling over many optical potential wells. The
dependence ofDsi on θ thus contains both λx and λz . This
is dramatically different to the situation in the jumping
regime where atoms only jump between adjacent wells.
Equation (6) also confirms that for λi � λj , Dsi does not
depend on λi as predicted in Section 3.

7 Friction force

The theoretical model of Section 4 was based on the de-
scription of the atomic dynamics by a Brownian motion
model. Let us now further investigate the validity of such
a description by testing in the numerical simulations some

Fig. 10. Transverse (x) and longitudinal (z) spatial diffusion
coefficients divided by |∆| as a function of θ for ∆ = −30Γ and
∆′0 = −300ωr. The points correspond to the numerical simu-
lations and the lines correspond to equation (6) (oscillating
regime).

characteristics of Brownian motion. We particularly per-
form a direct numerical measurement of the friction coef-
ficients and test the validity of the Einstein relation (2).

In order to probe the atomic dynamics we submit the
atoms to a constant, space and velocity independent force
in addition to the forces due to the atom-light interaction.
In an experiment this could be provided simply by gravity
or, for example, by the radiation pressure force of an addi-
tional weak laser beam. In a Brownian motion model such
a constant force F(c) = F

(c)
x ex + F

(c)
z ez will give rise to a

constant mean velocity 〈v〉 = vxex + vzez of the atomic
cloud with

〈vi〉 =
F

(c)
i

αi
· (49)

Because of the linearity of the Brownian equations of mo-
tion the kinetic temperature and the spatial diffusion co-
efficients are not changed.

Adding such a constant force in the numerical sim-
ulations along the i-direction, we observed in fact that
the atomic cloud experiences a drift in this direction at
a constant velocity. In the ideal case of a pure Brownian
motion any amplitude of F(c) can be used, but in the case
of Sisyphus cooling the friction coefficient is velocity de-
pendent. In order to get vi proportional to F (c)

i , it is thus
essential to use a small enough force which induces a global
drift much smaller than the width of the velocity distribu-
tion. Under this condition the temperature and the spatial
diffusion do not depend on F(c) and equation (49) can be
used to numerically find unique friction coefficients αi.

We can then compare these numerical results with the
friction coefficient obtained via the Einstein relation (2)
using the numerically found values of the temperature (see
Sect. 5) and of the spatial diffusion coefficient (Sect. 6).
In Figure 11 we plot the ratio of these two friction co-
efficients and find deviations of about 15%. Hence, the
dynamics of an atomic cloud in an optical lattice is in
reasonable agreement with a two-dimensional Brownian
motion model. Note that the eigen-directions of the mo-
tion are the x- and z-directions in good agreement with
the theoretical model.
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Fig. 11. Ratio of the friction coefficients calculated with
equation (49) and with equation (2) for various ∆ and for
|∆′0|/ωr = 150, 300, 450.

In order to better understand this result let us briefly
return to the model developed in Section 4. As has been
shown in the previous section, the numerically obtained
diffusion coefficient agrees well with the analytical re-
sult (38). In the derivation of the latter we have assumed
that the cloud of atoms can be split into a trapped frac-
tion and into a free fraction. Only the free atoms were
taken into account for the spatial diffusion. Similar argu-
ments must also be considered for the friction coefficient.
Adding a small constant force will leave a trapped particle
in its initial potential well, and therefore the fraction of
trapped atoms does not contribute to the mean velocity
〈v〉 of the cloud. Thus, the measured friction coefficient
using equation (49) should be given by the analytical re-
sult (28) divided by the fraction of free atoms. Hence, for
the measured values of the spatial diffusion and of the fric-
tion both sides of equation (2) are corrected by the same
factor. In other words, the Einstein relation holds because
the measured quantities only involve the freely travelling
atoms for which a Brownian motion model works well.

Therefore, we obtain an analytic fit to the measured
friction coefficient by inserting equations (5, 44) into equa-
tion (2). We find

αx '
2~k2

x
|∆|
Γ

1 + (k2
x + 0.72k2

z)
∆2

Γ 2
~

M|∆′0|
(50)

αz '
0.55~k2

z
|∆|
Γ

1 + 0.4 (k2
z + 1.39k2

x) ∆2

Γ 2
~

M|∆′0|
· (51)

These approximate expressions are compared with the
numerically obtained values of the friction coefficient in
Figure 12. We see that there is excellent agreement both
qualitatively and quantitatively.

Fig. 12. Transverse (a) and longitudinal (b) friction coeffi-
cients versus ∆ (data points) and the curves corresponding to
equation (7) for θ = 45◦ and for ∆′0/ωr = −150,−450,−750.

The behavior of αi is again different in the jumping
and the oscillating regime. In the jumping regime, αi is
proportional to |∆|/Γ and approximately independent of
∆′0 [2,14]:

αx = 2~k2
x

|∆|
Γ

(52)

αz = 0.55~k2
z

|∆|
Γ
· (53)

However, Figure 12 exhibit a small dependence of αi ver-
sus ∆′0 in the jumping regime and this is not forecasted by
the model. In fact, the kinetic temperature is not propor-
tional but linear in ∆′0 and this induce a dependence of
the spatial distribution P in ∆′0. Coefficients Ci are thus
∆′0-dependent and this can explain the discrepancy.

In the oscillating regime, αi is proportional to Γ ′0 =
Γ∆′0/∆ and depends on both λx and λz as discussed in
Section 6:

αx =
2M

1 + 0.72k2
z/k

2
x

Γ∆′0
∆

(54)

αz =
1.38M

1 + 1.39k2
x/k

2
z

Γ∆′0
∆
· (55)

The expression found in the simulations is in good quali-
tative agreement with the expression derived in the theo-
retical model equation (7). Note however that coefficients
Ci are not given by equation (36) but are to be calculated
considering the free atoms which contribute to spatial dif-
fusion only.
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8 Conclusions

In conclusion, we performed a systematic study of the be-
havior of an atomic cloud in a lin⊥lin optical lattice with
the help of semi-classical Monte-Carlo simulations. We ex-
plored a broad range of lattice parameters including the
jumping and the oscillating regime.

The temperature was found to be linear in the poten-
tial depth and independent of the laser detuning and of
the lattice angle in a broad range of parameters. We have
shown that the temperature is anisotropic, the transverse
one being larger than the longitudinal one by a factor
of 1.4. All these results are well explained with the help of
the physical picture of Sisyphus cooling and are in good
agreement with experimental results.

The spatial difusion Ds was studied in the regime of
normal diffusion. The behavior of Ds differs significally in
the jumping and in the oscillation regimes. In the first,
Ds decreases with |∆| and increases with |∆′0|. In the sec-
ond, Ds increases linearly with |∆| and does not depend
on |∆′0|. The behavior of Ds as a function of the lattice
spatial periods is also different in both regimes: whereas
Dsi is proportional to λ2

i in the jumping regime, it is a
function of λx as well as λz in the oscillating regime. This
reveals correlations between the transverse and longitudi-
nal directions of the lattice.

By adding a constant force in the Monte-Carlo sim-
ulations we could numerically measure the friction co-
efficients and we showed that the Einstein relations are
fulfilled. This supports a description of the dynamics in
terms of Brownian motion. The friction coefficient αi is
proportional to ∆ and 1/λ2

i in the jumping regime. In the
oscillating regime, αi is proportional to ∆′0 and 1/∆, and
the dependence on the lattice geometry involves both 1/λx
and 1/λz.

The numerical results have been found to be in good
agreement with a simple theoretical model based on a
semi-classical approach. We derive the steady-state tem-
perature, the friction force, and the spatial diffusion from
a model of Brownian motion taking into account atomic
localization in the optical potential wells. To explain the
measured friction and spatial diffusion, the atomic cloud
must be split into a trapped part and a free part. While in
general both parts contribute to the internal and external
dynamics, only the free fraction of atoms is responsible for
the observed expansion of the cloud and for the drift of
the center of mass under the influence of a weak constant
force.

The spatial diffusion of atomic clouds in optical lat-
tices is usually studied in pump-probe spectroscopy exper-
iments, using the properties of the Rayleigh line [30]. How-
ever, the validity of this method has never been proven.
We expect that the models discussed here will serve to this
verification by providing a systematic theoretical study of
the directly measured spatial diffusion coefficients.

Finally, it should be noted that our restriction to
θx = θy has been guided by experimental restrictions but
is not necessary. Indeed, when this condition is not ful-
filled, the unbalanced radiation pressure induces a fast es-
cape of the atomic cloud from the optical lattice which

makes experimental investigations difficult. Nevertheless,
this situation could be of great interest because it offers
the opportunity of studying optical lattices with different
spatial periods along the x- and y-axes and interesting
anisotropic effects could be found.
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